جدول المحتويات
تعتمد الكثير من التّطبيقات في حياتنا اليوميّة على نظريّة فيثاغورس لتحديد الارتفاعات أو الأبعاد أو المسافات؛ حيث تنصّ النّظريّة على طريقة حساب طول أحد أضلاع المثلّث قائم الزّاوية عند معرفة طول الضّلعين الآخرين، ولنظريّة فيثاغورس العديد من طرق الإثبات، ومنها: برهان إقليدس، وبرهان جوجو، والبرهنة باستعمال المُتّجهات، بالإضافة إلى طريقة الإثبات بالاعتماد على خاصّيّات الحساب المثلّثيّ في المثلّثات قائمة الزاوية أيضًا، ويتمّ تدريس هذه النّظريّة للطّلبة في المدارس عند دراسة المثلّثات وخصائصها الهندسيّة.
يتحدث هذا المقال عن نظرية فيثاغورس، ويشمل:
- تعريف نظريّة فيثاغورس مع ذكر نصّها.
- تمثيل نظريّة فيثاغورس على شكل معادلة تربيعيّة.
- ذكر العديد من الأمثلة المحلولة على نظريّة فيثاغورس.
- الإشارة إلى قصّة اكتشاف النظريّة من قبل فيثاغورس.
- ذكر العديد من التّطبيقات والاستخدامات لنظريّة فيثاغورس في حياتنا اليوميّة.
ما هي نظرية فيثاغورس ؟
تشتهر مُبَرهَنة فيثاغورس باسم نظريّة فيثاغورس، وتهدف هذه النّظريّة إلى بيان العلاقة بين أطوال الأضلاع في المثلّث قائم الزّاوية مع كتابتها على شكل معادلة؛ يُمكن استخدامها بسهولة كبيرة لإيجاد طول الضّلع الثّالث عند معرفة أطوال الضّلعين الاثنين الآخرين في المقلّث القائم نفسه، وأُطلق على النظريّة المذكورة هذا الاسم نسبة إلى الفيلسوف وعالم الرّياضيّات اليونانيّ فيثاغورس الساموسي مؤسّس المدرسة الفلسفيّة الفيثاغورية.
قصة نظرية فيثاغورس
قام المزارعون ببناء جدران بالقرب من نهر النّيل لضمان عدم فيضان المياه إلى أراضيهم الزّراعيّة وإتلافها، ولاحظ فيثاغورس بأنّهم يقومون ببناء هذه الجدران على شكل مثلّثات ذات زاوية قائمة، كما لاحظ بأنّ طول أضلاع هذه المثلّثات تبلغ 3 وحدات للضّلع الأوّل، وتبلغ 4 وحدات للضّلع الثّاني، في حين يبلغ طول الوتر 5 وحدات، ويعمل بعض المزارعين على بناء أسوار أكبر من خلال تضعيف هذه الأبعاد لتصبح 6 وحدات للضّلع القصير، وترتفع إلى 8 وحدات للضّلع الثّاني، وإلى 10 وحدات للوتر.
حرص فيثاغورس على دراسة العلاقة بين أضلاع المثلّثات القائمة التي يعتمد عليها المزارعون في بناء الجدران، ووضع نظريّة تُفضي بأنّ أطوال أضلاع المُثلّث القائم تساوي 3 وحدات للضّلع الأقصر، وتساوي 4 وحدات للضّلع الثّاني، وتبلغ 5 وحدات للضّلع الأطول أو تساوي أضعاف هذه الأعداد من الوحدات، وبعد دراسة العلاقة السّابقة بين الأضلاع؛ لاحظ بأنّ مربّع طول الوتر يساوي مربّع طول الضّلع الأوّل مضافًا إليه مربّع طول الضّلع الثّاني دائمًا، وهو نصّ نظريّته.
نص قانون نظرية فيثاغورس
تنصّ نظريّة فيثاغورس المشهورة على أنّ مربّع طول الوتر في المثلّث قائم الزّاوية يساوي مجموع مربّع أطوال الضّلعين الآخرين، وإذا رمزنا إلى الوتر بالرّمز و، وإلى الضّلع الأقصر بالرّمز س، وإلى الضّلع الثّالث بالرّمز ص؛ فإنّ و2=س2+ص2 حسب نظريّة فيثاغورس، وهذا يعني أنّ و=(س2+ص2)0.5 أيضًا، ويُمكن الاستفادة من هذه المعادلات لإيجاد أطوال أضلاع المُثلّث القائم الأخرى على النّحو الآتي:
- س2=و2-ص2
- ص2=و2-س2
إثبات نظرية فيثاغورس
توجد العديد من الإثباتات التي تشير إلى صحّة نظريّة فيثاغورس، وأبرزها الإثبات عن طريق خاصّيّات الحساب المثلّثيّ في المثلّث قائم الزّاوية كما يأتي بالاعتماد على رموز المثلّث المرسوم:
- جتا α=س÷و
- جتا2 α=س2÷و2
- جا α=ص÷و
- جا2 α=ص2÷و2
- جتا2 α+جا2 α = 1
- (ص2÷و2)+(س2÷و2)=1
- (ص2+س2)÷(و2)=1
- ص2+س2=و2
أمثلة حول نظرية فيثاغورس
- إذا كان طول الضّلع ص=6م، وطول الضّلع س=8م، فما هو طول الوتر في هذا المثلّث؟
- و2=ص2+س2
- و2=62+82
- و2=100
- و=(100)0.5
- و=10م
- إذا كان طول الضّلع س=8م، وطول الوتر و=12م، فما هو طول الضّلع ص؟
- و2=ص2+س2
- 122=ص2+82
- ص2=122-82
- ص2=80
- ص=(80)0.5
- ص=8.94م تقريبًا.
تطبيقات على نظرية فيثاغورس
- يُمكن الاعتماد على نظريّة فيثاغورس لتحديد المسافة الأقصر بين نقطتين جغرافيّتين عن طريق امتداد رسم خطّ ممتدّ إلى الشّرق أو الغرب من النّقطة الأولى، ثمّ رسم خطّ ممتدّ إلى الشّمال أو الجنوب من النّقطة الثّانية؛ حيث ينتج عن تقاطع هذه الخطوط مع التّوصيل بين النّقطتين مثلّث قائم، ويتمّ استخدام المبادئ ذاتها في تطبيقات الملاحة الجويّة.
- يعتمد الرّسّامون على تطبيق نظريّة فيثاغورس لمعرفة طول السّلّم الذي يحتاجون إليه عند الرّسم على الأماكن المرتفعة؛ فإنّ طول السّلّم هو الوتر النّاتج عن مثلّث تتقاطع بدايته ونهايته مع نقطة تلامس السلّم مع الأرض والمبنى.
- نستطيع تطبيق نظريّة فيثاغورس لمعرفة حجم التّلفاز الذي ينبغي علينا شراؤه، وذلك من خلال معرفة طول المساحة المُخصّة للتّلفاز ومعرفة عرضها، ثمّ حساب الوتر؛ فإنّ مقاس الشاشة هو الوتر مضافًا إليه الحوافّ السّفليّة والعلويّة.
استخدامات نظرية فيثاغورس
- العمارة والبناء: يَكثر استخدام نظريّة فيثاغورس من قبل مهندسي العمارة والأعمال الخشبيّة لتحديد الارتفاعات أو الأبعاد المناسبة لتصميماتهم؛ ومنها حساب مساحة السّطح الذي يغطّيه الكرميد.
- إنشاء الزّوايا المُربّعة: يعتمد البنّاء على نظريّة فيثاغورس لضمان إنشاء غرفة مربّعة بالكامل، وذلك من خلال المُثلّث الذي يبلغ طول أحد أضلاعه 3 وحدات، والضّلع الثّاني 4 وحدات، والضّلع الأخير 5 وحدات؛ فإنّ الزّاوية المقابلة للضّلع الأخير تكون قائمة دائمًا.
- أعمال المساحة: تُعرف أعمال المساحة بأنّها الحسابات التي يُمكن إجراؤها لمعرفة المسافات والارتفاعات بين النّقاط المختلفة قبل رسم الخريطة، وتعتمد أجهزة المساحة على نظريّة فيثاغورس بشكل أساسيّ لحساب جميع القيم السّابقة.